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ABSTRACT
Recommender systems not only serve users but also affect user pref-
erences through personalized recommendations. Recent researches
investigate the effects of the entire recommender system on user
preferences, i.e., system-level effects, and find that recommenda-
tions may lead to problems such as echo chambers and filter bubbles.
To properly alleviate the problems, it is necessary to estimate the
effects of recommending a specific item on user preferences, i.e.,
item-level effects. For example, by understanding whether recom-
mending an item aggravates echo chambers, we can better decide
whether to recommend it or not.

This work designs a method to estimate the item-level effects
from the causal perspective. We resort to causal graphs to charac-
terize the average treatment effect of recommending an item on the
preference of another item. The key to estimating the effects lies in
mitigating the confounding bias of time and user features without
the costly randomized control trials. Towards the goal, we estimate
the causal effects from historical observations through a method
with stratification and matching to address the two confounders,
respectively. Nevertheless, directly implementing stratification and
matching is intractable, which requires high computational cost due
to the large sample size. We thus propose efficient approximations
of stratification andmatching to reduce the computation complexity.
Extensive experimental results on two real-world datasets validate
the effectiveness and efficiency of our method. We also show a
simple example of using the item-level effects to provide insights
for mitigating echo chambers.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Recommender system is a medium to connect users and items,
which is a cornerstone of various online platforms [4, 14, 35]. It
aims to facilitate information seeking by recommending items that
match user preferences. There is a growing consensus that recom-
mender systems also affect user preferences while catering to the
user preferences [4, 14, 25]. Recent researches focus on the effect of
the entire recommender system on user preferences, i.e., the system-
level effects. Specifically, they attempt to answer whether and to
what extent a system changes the preference of users. For exam-
ple, some exceptional studies [3, 25, 36] reveal that recommender
systems in scenarios such as e-commerce narrow and reinforce
users’ interests, leading to notorious issues of echo chambers and
filter bubbles. Other studies [14, 18] measure the degree of the echo
chambers caused by the systems.

The recognition of system-level effects calls for the considera-
tion of such effects when making recommendation. Nevertheless,
the current understanding of system effects is too coarse to guide
the specific adjustment of recommendations. To better determine
whether to recommend an item, we need to quantify the specific
effect of recommending this item on user preferences, i.e., item-
level effect. For example, if we find that recommending an item
contributes to the exacerbation of echo chambers, we can reduce
the frequency of recommending this item. Nevertheless, few stud-
ies focus on estimating the item-level effects. Therefore, we aim to
design an effective method to quantify such effect.

Given that interactions with items reveal user preferences, we
set the target as answering a causal question: to what extent recom-
mending an item to a user affects the probability of like on another
item. To recognize the causal effect, we abstract a causal graph to
describe the generation of interactions. As shown in Figure 1, we
assume whether the user likes on item 𝑗 (𝐿) at time (𝑇 ) is affected
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by the previous exposure of item 𝑣 (𝑅). User features (𝐹 ) simultane-
ously affect the exposure probability of item 𝑣 and like probability of
item 𝑗 . Accordingly, our target is to estimate the average treatment
effect (ATE) [15, 57] of 𝑅 on 𝐿 for each item pairs (𝑣, 𝑗).

A default choice for estimating ATE is randomized control trials
[12, 28], which require two groups of users, one as the treatment
group and the other as the control group. Each user in the treatment
group is forcibly recommended item 𝑣 . After that, we can estimate
ATE as the difference of like probabilities over the two groups when
recommending item 𝑗 . However, randomized controlled trials are
time-consuming and may harm user experience [23]. Therefore,
we estimate ATE from observational records of exposure and likes.
The core idea is selecting two user groups such that their historical
records can be regarded as-if they are treated by randomized con-
trol trails. The key lies in conducting the confounder adjustment
to make the exposure of item 𝑣 and confounders independent. A
widely used confounder adjustment is stratification [22, 57], which
is employed to eliminate the time confounder. Nevertheless, stratifi-
cation fails to deal with high-dimensional confounders, in this case
the user feature confounder. In this light, we leverage matching
[40] to deal with the confounder of user features.

Estimating the ATE for all (𝑣, 𝑗) item pairs is challenging due to
the large size of items1. The computational cost of existing strat-
ification and matching methods [22, 39] (e.g., propensity scores
[32]) is unaffordable. We thus pursue efficient approximations of
stratification and matching. For stratification, we establish the in-
dependence between exposure and confounders with an ingenious
sampling of users that largely reduces the computation cost. As to
matching, we propose a heuristic distance metric that significantly
accelerates the matching process with binary search. We conduct
an extensive set of experiments on two public real-world datasets.
(i) Experimental results show that our method successfully elimi-
nates both sets of confounders, validating the effectiveness of our
proposed method and approximation strategies. (ii) Experiments
demonstrate that our method is significantly more efficient than
the existing methods that use the propensity scores. (iii) We show
a simple example to illustrate how to use the item-level effects to
guide the design of recommender systems.

The main contributions of this work are as follows:
• We study a new problem of estimating the item-level effects
on user preferences and solve the problem through confounder
adjustment methods with stratification and matching.

• We propose two efficient approximation strategies of stratifica-
tion and matching, which largely reduce the time complexity of
estimating the item-level effects.

• We conduct sufficient experiments that demonstrate the effec-
tiveness and efficiency of our method, and show the significance
of the item-level effects on the design of recommender systems.

2 PROPOSED METHOD
Problem Definition. For each item pair (𝑣, 𝑗), our target is to
estimate the ATE [15, 57] of recommending the item 𝑣 on the user
preferences over item 𝑗 from the relevant historical records. Let
X = {𝑥𝑖 } = {(𝑢𝑖 , 𝑡𝑖 , 𝑓𝑖 , 𝑟𝑖 , 𝑙𝑖 )} denote the relevant historical records,
where 𝑖 is the index of samples. A sample 𝑥 = (𝑢, 𝑡, 𝑓 , 𝑟, 𝑙) denotes

1Every pair requires one pass of stratification and matching.

: user features

: time

: whether the user likes item at 
the given time

: whether the user has been 
recommended item before the 
given time

Figure 1: Causal relations of recommending an item 𝑣 (𝑅)
and user preference on item 𝑗 (𝐿). 𝑇 and 𝐹 are confounders
between 𝑅 and 𝐿.

the feedback 𝑙 of user 𝑢 with features 𝑓 on the recommendation of
item 𝑗 at time 𝑡 . 𝑙 is a binary indicator of whether the user 𝑢 likes2
the item 𝑗 , where 𝑙 = 1 if𝑢 likes 𝑗 at 𝑡 and 𝑙 = 0 otherwise. Similarly,
𝑟 denotes the exposure of item 𝑣 to user 𝑢 at time 𝑡 , where 𝑟 = 1
if 𝑢 has been recommended item 𝑣 before 𝑡 and 𝑟 = 0 otherwise.
In the following, we first scrutinize the problem from the causal
perspective in Section 2.1. Then we introduce the elimination of
two confounders in Section 2.2 and 2.3 respectively.
2.1 Recognizing Recommendation Effects
To recognize the effects, we abstract the generation procedure of
historical records in Figure 1. In the causal graph, we use 𝑇, 𝐹, 𝑅, 𝐿
to denote the relevant variables: time, user feature, exposure of item
𝑣 , and feedback on item 𝑗 , respectively. A directed edge indicates
that the value of the successor node depends on the value of the
ancestor node. In particular,
• 𝑇 → 𝑅 indicates that time affects the probability of recommend-
ing item 𝑣 . Such effects can be strong in certain scenarios such
as news recommendation and micro-video recommendation.

• 𝑇 → 𝐿 indicates the probability of interactingwith item 𝑗 changes
over time. For example, the interaction probability will decrease
as news gets out-of-date.

• 𝐹 → 𝑅 indicates user features influence the probability of recom-
mending item 𝑣 . This is because recommender models typically
consider user features when making recommendations.

• 𝐹 → 𝐿 indicates the user features affect the probability of inter-
acting with item 𝑗 . For instance, the gender of the user directly
affects whether an item will be purchased.

Average Treatment Effect. According to the causal graph, our
target is to estimate the ATE over path 𝑅 → 𝐿, i.e., from the treat-
ment (recommending item 𝑣) to the outcome (liking item 𝑗 ). Con-
ceptually, given an item pair (𝑣, 𝑗) and the relevant records X =

{(𝑢𝑖 , 𝑡𝑖 , 𝑓𝑖 , 𝑟𝑖 , 𝑙𝑖 )}, ATE represents the difference of the probabilities
of liking 𝑗 between samples in the treatment group ({𝑥𝑖 | 𝑟𝑖 = 1})
and control group ({𝑥𝑖 | 𝑟𝑖 = 0}) [19]. In an ideal case, we can col-
lect the samples through randomized controlled trials, and directly
estimate the ATE by computing the difference over the two groups,
which is formulated as:

ATEideal = 𝐿t − 𝐿c =

∑
𝑖 𝑟𝑖𝑙𝑖∑
𝑖 𝑟𝑖

−
∑

𝑖 (1 − 𝑟𝑖 )𝑙𝑖∑
𝑖 (1 − 𝑟𝑖 )

, (1)

where 𝐿t and 𝐿c denote the average 𝐿 values of the treatment group
and the control group, respectively.

2In practice, we can consider any kind of user feedback (e.g., "click") as the "like", which
indicates the preference of users.
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Estimating from History. In practice, it is improper to con-
duct this randomized controlled trial-based estimation in recom-
mendation, since the exposure policy under control can hurt user
experience. Moreover, each item pair requires a set of trials, which
is unaffordable given the large number of items. Therefore, we esti-
mate the ATE from the historical recordsX collected from previous
recommendations. As aforementioned, calculating theATE fromhis-
torical records faces confounding biases due to the presence of the
confounders 𝑇 and 𝐹 [15, 22]. A default choice for eliminating the
confounding biases is performing confounder adjustment [22, 57]
over the historical records. These adjustment methods select treat-
ment and control groups from X such that the confounder and
treatment are independent over the selected samples, i.e., removing
the effect of confounder on the treatment. In the following sections,
we describe how to estimate the ATE for (𝑣, 𝑗) item pairs effectively
and efficiently with the confounder adjustment.

2.2 Adjusting for Time Confounder
Following previous causal studies [5, 45], we choose the widely used
stratification [22, 57] to eliminate the time confounder 𝑇 . We first
introduce the key concepts in stratification methods (Section 2.2.1)
and the implementation of stratificationwith propensity scores (Sec-
tion 2.2.2). Then we propose an approximation strategy to reduce
the computation cost (Section 2.2.3). Lastly, the time complexity
analysis is provided (Section 2.2.4).

2.2.1 Stratification Methods. To eliminate the time confounder
𝑇 , we need to cut off the backdoor path 𝑇 → 𝑅, or make 𝑇 and
𝑅 independent of each other. The stratification method [22, 57] is
a typical approach to adjust confounders. The idea is to split the
data into multiple subgroups such that the confounder 𝑇 and the
treatment 𝑅 are independent within each subgroup.

Formally, given the data X = {𝑥𝑖 }, we first divide X into 𝐾
disjoint subgroups X1,X2, . . . ,X𝐾 , assuming that 𝑇 and 𝑅 are inde-
pendent for the samples in each subgroup (details will be provided
later), i.e., 𝑇 ⊥⊥ 𝑅. Since the time confounder is eliminated, we can
accurately estimate the ATE in each subgroup:

ATEs
𝑘
= 𝐿

t
𝑘 − 𝐿

c
𝑘 =

∑
𝑥𝑖 ∈X𝑘

𝑟𝑖𝑙𝑖∑
𝑥𝑖 ∈X𝑘

𝑟𝑖
−
∑
𝑥𝑖 ∈X𝑘

(1 − 𝑟𝑖 )𝑙𝑖∑
𝑥𝑖 ∈X𝑘

(1 − 𝑟𝑖 )
. (2)

The results of each subgroup are then combined to estimate ATE:

ATE =

𝐾∑︁
𝑘=1

𝑞𝑘ATEs𝑘 , 𝑞𝑘 =
|X𝑘 |
|X| , (3)

where 𝑞𝑘 denotes the proportion of the 𝑘-th subgroup.

2.2.2 Stratification with Propensity Scores. One of the key problems
in stratification methods is how to divide the data to ensure the
samples within the same subgroup satisfying 𝑇 ⊥⊥ 𝑅. A common
approach is to stratify based on the propensity scores [32, 39]. The
propensity scores (PS) are defined as the conditional probabilities
of the treatment given the confounder. Specifically, for (𝑣, 𝑗) item
pair, the propensity score is defined as 𝑃 (𝑅 = 1|𝑣,𝑇 = 𝑡𝑖 ). We put
the samples with the same propensity scores into a subgroup:

Xps
𝑘

= {𝑥𝑖 | 𝑃 (𝑅 = 1|𝑣,𝑇 = 𝑡𝑖 ) = 𝑝𝑘 } , (4)

where 𝑝𝑘 is the common PS of the samples in the 𝑘-th subgroup.
Since the conditional probabilities are fixed, 𝑇 ⊥⊥ 𝑅 is satisfied.

(a) Illustration of 𝑟𝑖 changes over time.

(b) llustration of three types of users.

Figure 2: Illustration of users’ historical data. Arrows: The
timelines. Fork: One recommendation for the item 𝑣 . Circle:
One recommendation for the item 𝑗 (i.e., a sample in our
data), where white indicates 𝑟 = 0 and black indicates 𝑟 = 1.

However, there are two problems when calculating the propen-
sity scores from historical data. First, it is difficult to estimate
propensity scores accurately [41], and the inaccurate estimation
could introduce additional challenges to our stratification. Second,
it is impractical to estimate the effects over all (𝑣, 𝑗) item pairs
regardless of calculating the propensity scores as pre-processing or
on the fly. The pre-calculation of the propensity scores is unrealistic
due to the storage cost to cover all combinations of 𝑣 and 𝑡 . As such,
calculating the propensity scores when estimating the effect also
face an unaffordable time cost.
2.2.3 Stratification with Approximation Strategy. To resolve the
above issues, we propose an approximation strategy. The idea is to
efficiently establish the independence of 𝑇 and 𝑅 in each subgroup
by applying an ingenious user sampling strategy, hence eliminating
the time confounder with much less computational cost. Recall that
𝑟𝑖 indicates whether the user 𝑢𝑖 has been recommended with the
item 𝑣 before time 𝑡𝑖 . As shown in Figure 2 (a), assuming that user
𝑢𝑖 is first recommended with item 𝑣 at time 𝑡𝑢𝑖 ,𝑣 , we have:

𝑟𝑖 =

{
1, 𝑡𝑖 > 𝑡𝑢𝑖 ,𝑣

0, otherwise,
(5)

which means that the 𝑡𝑢𝑖 ,𝑣 is the cut-off point for the value of 𝑅.
We treat samples over a continuous period of time as a subgroup:

X𝑘 =

{
𝑥𝑖 | 𝑡start𝑘

≤ 𝑡𝑖 < 𝑡end𝑘

}
, (6)

where the start time 𝑡start
𝑘

and end time 𝑡end
𝑘

for each subgroup can
be set by controlling the group size |X𝑘 |. More details are provided
in the experiments. Then within each subgroup, the users can be
naturally classified into three categories:
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• Users who have been recommended 𝑣 before 𝑡start
𝑘

, i.e., U1 =

{𝑢𝑖 | 𝑡𝑢𝑖 ,𝑣 < 𝑡start𝑘
} (see 𝑢1 in Figure 2 (b)). In this case, we have:

𝑃 (𝑅 = 1|𝑇 = 𝑡,𝑢𝑖 ∈ U1) = 1 = 𝑃 (𝑅 = 1|𝑢𝑖 ∈ U1) . (7)

In other words, 𝑅 is always equal to 1 regardless of the value of 𝑇 ,
since the user has been recommended 𝑣 before the subgroup start
time 𝑡start

𝑘
. Therefore, 𝑇 and 𝑅 are independent in this case.

• Users who are first recommended 𝑣 after 𝑡end
𝑘

(𝑢2 in Figure 2 (b)),
i.e., U2 = {𝑢𝑖 | 𝑡𝑢𝑖 ,𝑣 ≥ 𝑡end𝑘

}, there is:

𝑃 (𝑅 = 1|𝑇 = 𝑡,𝑢𝑖 ∈ U2) = 0 = 𝑃 (𝑅 = 1|𝑢𝑖 ∈ U2) . (8)

Similarly, 𝑅 is always equal to 0 and we have 𝑇 ⊥⊥ 𝑅 in this case.
• The third category of users is defined as U3 = {𝑢𝑖 | 𝑡start

𝑘
<

𝑡𝑢𝑖 ,𝑣 ≤ 𝑡end𝑘
}, where𝑢3 in Figure 2 (b) is an example in this category.

Since 𝑟𝑖 may vary with 𝑡𝑖 , we usually have 𝑇 ⊥̸⊥ 𝑅 for 𝑢𝑖 ∈ U3.
However, the number of samples in this case is negligible compared
to those in the first two cases, especially for a small time interval.
Therefore, we approximate the estimation by ignoring the samples
in the last case:

X′
𝑘
= X\{𝑥𝑖 | 𝑥𝑖 ∈ X𝑘 , 𝑢𝑖 ∈ U3}
= {𝑥𝑖 | 𝑥𝑖 ∈ X𝑘 , 𝑢𝑖 ∈ U1 ∪U2}.

(9)

Then for samples in the set X′
𝑘
, there is:

𝑃 (𝑅 = 1|𝑇 = 𝑡)
(𝑎)
=

∑︁
𝑢∈U1∪U2

𝑃 (𝑅 = 1|𝑈 = 𝑢,𝑇 = 𝑡)𝑃 (𝑈 = 𝑢 |𝑇 = 𝑡)

(𝑏 )
=

∑︁
𝑢∈U1∪U2

𝑃 (𝑅 = 1|𝑈 = 𝑢)𝑃 (𝑈 = 𝑢 |𝑇 = 𝑡)

(𝑐 )
=

∑︁
𝑢∈U1∪U2

𝑃 (𝑅 = 1|𝑈 = 𝑢)𝑃 (𝑈 = 𝑢) (𝑑 )
= 𝑃 (𝑅 = 1),

(10)

where Eq. (10)(a) is the Law of total probability; Eq. (10)(b) is the
conditional independencementioned in Eq. (7) and Eq. (8); Eq. (10)(c)
is from the basic independence assumption of𝑈 and𝑇 . As Eq. (10)(d)
showed, the samples in the subgroupX′

𝑘
satisfy𝑇 ⊥⊥ 𝑅. In summary,

we can eliminate the time confounder by simply removing a small
fraction of the samples.
2.2.4 Time Complexity. With the approximation strategy, dividing
subgroups and removing samples only require 𝑂 (𝑁 log𝐾), where
𝑁 is the number of samples and 𝐾 is the number of subgroups. The
time complexity of the estimation is linear 𝑂 (𝑁 ). Therefore, the
total time complexity is𝑂 (𝑁 log𝐾 +𝑁 ) = 𝑂 (𝑁 log𝐾). Without the
approximation strategy, the propensity scores need to be computed
first. The total time complexity is 𝑂 (𝑁𝑆 + 𝑁 log𝐾), where 𝑆 is the
size of the item representations used to calculate the propensity
scores. In practice, 𝑆 is much larger than log𝐾 . Therefore, our
approximation strategy dramatically reduces the time cost.

2.3 Adjusting for User Feature Confounder
After the stratification, the time confounder is decoupled from the
ATE estimation. However, the samples in each subgroup are still
affected by the user feature confounder, where stratification is not
suitable in this case as it fails to deal with the high-dimensional
confounders. Therefore, we employ the matching methods [40]

to eliminate the user feature confounder in each subgroup. This
section first introduces the concept of the matching methods (Sec-
tion 2.3.1). We then propose several effective distance metrics for
matching (Section 2.3.2 - 2.3.4) and analyze the total computational
costs (Section 2.3.5).
2.3.1 Matching Methods. We denote 𝑙𝑖 (𝑟𝑖 = 1) as the value of 𝑙𝑖
assuming 𝑟𝑖 = 1. When the 𝑖-th sample belongs to the treatment
group (𝑟𝑖 = 1), 𝑙𝑖 (𝑟𝑖 = 1) is in fact happened and thus is called the
factual outcome. In this case, there is 𝑙𝑖 (𝑟𝑖 = 1) = 𝑙𝑖 . When the 𝑖-th
sample belongs to the control group (𝑟𝑖 = 0), 𝑙𝑖 (𝑟𝑖 = 1) is also exist,
it just does not happen in fact. Therefore, when 𝑟𝑖 = 0, 𝑙𝑖 (𝑟𝑖 = 1)
is called the counterfactual outcome. The difference between the
factual outcome and counterfactual outcome is the ATE.

Matching methods [40] are a representative category of meth-
ods for estimating the counterfactual outcome. In particular, they
match similar sample in another group based on some distance
metrics, and use the outcome of the matched sample to estimate
the counterfactual outcome.

Formally, 𝑙𝑖 (𝑟𝑖 = 1) can be estimated as:

𝑙𝑖 (𝑟𝑖 = 1) =
{
𝑙𝑖 , 𝑟𝑖 = 1
𝑙𝑖′ , 𝑟𝑖 = 0,

(11)

where 𝑙𝑖 (𝑟𝑖 = 1) is the estimated value of 𝑙𝑖 (𝑟𝑖 = 1) and 𝑖′ is the
index of the matched sample. Similarly, we estimate 𝑙𝑖 (𝑟𝑖 = 0) as:

𝑙𝑖 (𝑟𝑖 = 0) =
{
𝑙𝑖′ , 𝑟𝑖 = 1
𝑙𝑖 , 𝑟𝑖 = 0.

(12)

After estimating the factual and counterfactual outcomes, we can
directly calculate the ATE as:

ATE𝑘 =
∑︁
𝑥𝑖 ∈X′

𝑘

(
𝑙𝑖 (𝑟𝑖 = 1) − 𝑙𝑖 (𝑟𝑖 = 0)

)
. (13)

Note that ATE𝑘 is not affected by the user feature confounder. So
we use ATE𝑘 instead of ATEs

𝑘
to compute ATE =

∑𝐾
𝑘=1 𝑞𝑘ATE𝑘 .

2.3.2 Matching with Propensity Scores. For the matching methods,
the distance metric used for matching directly affects the accuracy
of the estimated counterfactual outcomes. One strategy is to use
propensity scores to define the distance metric [1]. The principle of
thismetric is similar to the principle of stratificationwith propensity
scores in Section 2.2.2. Concretely, for the 𝑖-th sample of (𝑣, 𝑗) item
pair, we first define the propensity score as 𝑃 (𝑅 = 1|𝑣, 𝐹 = 𝑓𝑖 ). Then,
the distance metric is defined as:

𝑑
ps
𝑖,𝑖′ = |𝑃 (𝑅 = 1|𝑣, 𝐹 = 𝑓𝑖 ) − 𝑃 (𝑅 = 1|𝑣, 𝐹 = 𝑓𝑖′ ) | , (14)

where 𝑑𝑖,𝑖′ denotes the distance between the 𝑖-th and 𝑖′-th samples.
Similar to the drawbacks of propensity scores discussed in strat-

ification, it is also challenging to estimate the propensity scores in
matching. First, the estimated propensity scores have high variances
[41], which generate unstable matching results. Second, the huge
number of (𝑣, 𝑓 ) values requires us to compute many propensity
scores, leading to high computational costs.
2.3.3 Matching with Approximation Strategy. In order to reduce
the computational cost, we propose a heuristic distance metric to
accelerate thematchingwith binary search. Specifically, we design a
new heuristic distance metric based on two important user features.

243243



A Causal View for Item-level Effect of Recommendation on User Preference WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

First, as the treatment group consists of users that have been
recommended item 𝑣 , many selected users have been exposed to
abundant recommended items. These users often have a lower like
rate, compared to those in the control group, as they are very se-
lective in liking and interacting with the huge amount of items
presented to them, resulting in a bias in the estimation (we further
investigate this phenomenon in Section 3.2). To address this prob-
lem, we define a distance metric such that the users of the matched
sample pairs have similar like rates:

𝑑r𝑖,𝑖′ =
��ℎr (𝑢𝑖 ) − ℎr (𝑢𝑖′ )�� , (15)

where ℎr (𝑢𝑖 ) represents the historical average like rate of user 𝑢𝑖 .
Second, we observe that users in the treatment group prefer the

items in the category 𝑔𝑣 . Here 𝑔𝑣 denotes the item category that
the item 𝑣 belongs to. In other words, if the item 𝑗 also belongs to
𝑔𝑣 , these users are more likely to prefer the item 𝑗 as well. This
bias misleads the estimation of the effect to be large for (𝑣, 𝑗) item
pair when both 𝑣 and 𝑗 come from the same item category (more
investigation is discussed in Section 3.2). To eliminate this bias, we
design another distance metric such that the users of the matched
sample pairs have similar preferences for the item category 𝑔𝑣 .

𝑑vr𝑖,𝑖′ =
��ℎvr (𝑢𝑖 ) − ℎvr (𝑢𝑖′ )�� , (16)

where ℎvr (𝑢𝑖 ) denotes the historical average like rate of users on
the item category 𝑔𝑣 . Finally, we combine the two distance metrics:

𝑑𝑖,𝑖′ =
1
2

(
𝑑r𝑖,𝑖′ + 𝑑

vr
𝑖,𝑖′

)
=

1
2
[��ℎr (𝑢𝑖 ) − ℎr (𝑢𝑖′ )�� + ��ℎvr (𝑢𝑖 ) − ℎvr (𝑢𝑖′ )��] . (17)

This metric is able to eliminate both biases mentioned above. To
speed up the matching, we modify 𝑑𝑖,𝑖′ with an approximation:

𝑑′𝑖,𝑖′ =
1
2
�� (ℎr (𝑢𝑖 ) + ℎvr (𝑢𝑖 )) − (

ℎr (𝑢𝑖′ ) + ℎvr (𝑢𝑖′ )
) �� . (18)

Note that 𝑑′
𝑖,𝑖′ = 𝑑𝑖,𝑖

′ when ℎr (𝑢𝑖 ) − ℎr (𝑢𝑖′ ) and ℎvr (𝑢𝑖 ) − ℎvr (𝑢𝑖′ )
have the same sign. The advantage of 𝑑′ is that it enables fast
matching with binary search after pre-calculating the value of(
ℎr (𝑢𝑖 ) + ℎvr (𝑢𝑖 )

)
for each sample.

2.3.4 Matching with Embeddings. Although matching with metric
𝑑′ is efficient, it only eliminates the bias of the features that are
used in the distance metric. Another alternative is to adopt a com-
prehensive but inefficient metric using user feature embeddings,
i.e., latent user representations:

𝑑e𝑖,𝑖′ =
1
2

(
1 −

𝑒𝑢𝑖 𝑒𝑢𝑖′

∥𝑒𝑢𝑖 ∥∥𝑒𝑢𝑖′ ∥

)
, (19)

where 𝑒𝑢𝑖 denotes the embedding of user 𝑢𝑖 , and we follow Mult-
VAE [30] to learn the user embeddings.
2.3.5 Time Complexity. With our approximation metric 𝑑′ and the
binary search, the time complexity of matching is 𝑂 (𝑁 t log𝑁 c),
where 𝑁 t and 𝑁 c are the number of samples in the treated and
control groups, respectively. Without the approximation strategy,
the time complexity increases to 𝑂 (𝑁𝑆 + 𝑁 t log𝑁 c). 𝑂 (𝑁𝑆) is the
complexity to calculate the propensity scores, where 𝑁 = 𝑁 t + 𝑁 c
denotes the number of all samples and 𝑆 denotes the size of the user
representations. In practice,𝑂 (𝑁𝑆) is the dominant term. Therefore,
our approximation metric significantly accelerates the matching.

• Summary. We summarize the ATE estimation method with
adjustment for the confounders in Algorithm 1. We start by strati-
fyingX into subgroups. Then we match samples in each subgroup
and merge the ATE𝑘 of each subgroup into ATE.

Algorithm 1 The method for estimating the item-level effects.

1: Input: X = {𝑥𝑖 } = {(𝑢𝑖 , 𝑡𝑖 , 𝑓𝑖 , 𝑟𝑖 , 𝑙𝑖 )} of the item pair (𝑣, 𝑗)
2: Output: ATE of the item pair (𝑣, 𝑗)
3: // Stratification
4: Divide X into 𝐾 disjoint subgroups X1,X2, . . . ,X𝐾
5: for 𝑘 = 1 to 𝐾 do
6: X′

𝑘
:= X𝑘\{𝑥𝑖 | 𝑥𝑖 ∈ X𝑘 , 𝑡start𝑘

< 𝑡𝑢𝑖 ,𝑣 ≤ 𝑡end𝑘
}

7: end for
8: // Matching in each subgroup
9: for 𝑘 = 1 to 𝐾 do
10: for each sample 𝑥𝑖 in the treatment group of X′

𝑘
do

11: 𝑙𝑖 (𝑟𝑖 = 1) := 𝑙𝑖
12: Binary search the matched sample 𝑥𝑖′ with a minimum

𝑑𝑖,𝑖′ in the control group of X′
𝑘

13: 𝑙𝑖 (𝑟𝑖 = 0) := 𝑙𝑖′ // 𝑖′ is the index of the matched sample 𝑥𝑖′
14: end for
15: ATE𝑘 :=

∑
𝑥𝑖 ∈X′

𝑘

(
𝑙𝑖 (𝑟𝑖 = 1) − 𝑙𝑖 (𝑟𝑖 = 0)

)
16: end for
17: // Merge the ATE1,ATE2, . . . ,ATE𝐾 into ATE
18: ATE :=

∑𝐾
𝑘=1 𝑞𝑘ATE𝑘

Table 1: Statistics of the datasets after preprocessing.

Statistics #User #Item #Exposure #Click #Category
MIND 750,434 29,309 97,592,931 3,958,501 16
CW 30,465 7,261 3,555,038 329,870 4

3 EXPERIMENTS
In this section, we aim to answer the following research questions:
• RQ1: Does our method eliminate the two kinds of confounders?
• RQ2: How is the efficiency of the proposed approximation strate-
gies compared with propensity-based approaches?

• RQ3: How does the item-level effects estimated by our method
provide insights for designing better recommender systems?

3.1 Datasets
We use two public real-world datasets from different domains to test
our method. (i)MIND3 [55]. The MIND dataset contains records
of exposure and click from the Microsoft News4. (ii) ContentWise
(CW)5 [37], which contains records of exposure and click on video
content, such as TV series and movies. Both datasets provide item
categories, which are used for the calculation of 𝑑vr and 𝑑′ to
perform matching. We treat click as the feedback of user preference
(i.e., 𝐿) for both datasets. Note that wemerge the records of exposure
and click in the CW dataset according to their timestamps, which
are separately provided in the original release. Other than that, we
3https://msnews.github.io/
4https://microsoftnews.msn.com/
5https://github.com/ContentWise/contentwise-impressions
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Table 2: Performance of eliminating the time confounder.
The best and second best results are marked in bold and
underlined, respectively.

Dataset MIND CW
Metric P<0.01 P<0.05 P<0.1 P<0.01 P<0.05 P<0.1
Direct 40.72% 49.16% 54.84% 59.96% 68.60% 73.28%
RS 26.65% 36.48% 43.37% 52.75% 63.57% 69.30%
Strat 3.79% 8.97% 14.68% 9.36% 18.21% 25.54%
SAM 3.14% 8.76% 14.52% 14.14% 24.43% 32.35%

Table 3: Statistics on user click rates.

Metric FT FC Diff P<0.01 P<0.05 P<0.1
MIND 0.0345 0.0378 -0.0033 41.28% 50.58% 56.82%
CW 0.0845 0.0876 -0.0031 49.90% 59.80% 65.46%

Table 4: Statistics on user click rates for item category 𝑔𝑣 .

Metric FT FC Diff P<0.01 P<0.05 P<0.1
MIND 0.0367 0.0354 0.0013 28.14% 38.88% 46.00%
CW 0.0833 0.0782 0.0051 48.96% 58.06% 63.82%

keep the original data without further processing. The statistics
for the processed datasets are shown in Table 1. In the following
experiments, we set the size of subgroup |X𝑘 | to 1,000 for MIND
and 500 for CW since the various scales of two datasets. The source
codes are available for reproduction6.

3.2 Performance Comparison (RQ1)
3.2.1 Performance of Eliminating Time Confounder. We first eval-
uate whether the proposed stratification method eliminates the
time confounder. For each subgroup X𝑘 of the item pair (𝑣, 𝑗), we
need to examine whether 𝑇 in the treatment group (𝑟𝑖 = 1) and
the control group (𝑟𝑖 = 0) are significantly different. We adopt the
Welch’s t-test [54] to calculate the P value, and denote the P value
for subgroupX𝑘 of the item pair (𝑣, 𝑗) as 𝑃𝑣,𝑗,𝑘 . Follow the previous
works [20, 26], if 𝑃𝑣,𝑗,𝑘 is less than some threshold (e.g., 0.01, 0.05,
and 0.1), we consider 𝑇 in the treatment and control groups to be
significantly different, which implies that the samples in the sub-
groupX𝑘 are still affected by the𝑇 confounder. Finally, we calculate
the proportion of subgroups affected by the 𝑇 confounder in all
subgroups of all item pairs:

P<0.01 =
∑
𝑣,𝑗

∑
𝑘 𝛿 (𝑃𝑣,𝑗,𝑘 < 0.01)∑
𝑣,𝑗

∑
𝑘 1

, (20)

where indicator function 𝛿 (𝑃𝑣,𝑗,𝑘 < 0.01) = 1 if and only if 𝑃𝑣,𝑗,𝑘 <

0.01 is true. Note that the value of the metric P<0.01 is in the range
of [0, 1], and lower value indicates better adjustment for the con-
founder. Similarly, we calculate P<0.05 and P<0.1 to cover different
significant levels, and evaluate the following causal effect estima-
tionmethods: (i)Direct: The direct estimationwithout stratification
in Eq. (1). (ii) RS: Randomly stratify the samples. (iii) Strat: Strati-
fication with our proposed approximation strategy as formulated
in Eq. (9). (iv) SAM: Our method (including both stratification and
matching) with approximation strategies.

Table 2 shows the performance where we find that:

6https://github.com/mdyx/Recommendation-Effect

Table 5: Performance of eliminating the user click rate bias.

Dataset MIND CW
Metric P<0.01 P<0.05 P<0.1 P<0.01 P<0.05 P<0.1
Direct 41.28% 50.58% 56.82% 49.90% 59.80% 65.46%
RM 28.32% 39.20% 45.72% 31.92% 43.24% 50.22%
Mat w 𝑑r 0.02% 0.02% 0.02% 0.34% 0.36% 0.44%
Mat w 𝑑vr 46.98% 55.54% 61.40% 14.30% 22.28% 28.22%
Mat w 𝑑e 25.70% 37.26% 44.68% 18.16% 28.14% 35.38%
Mat 16.52% 25.14% 31.04% 8.34% 13.88% 19.22%
SAM 7.92% 18.58% 27.13% 8.04% 14.46% 19.62%

Table 6: Performance of eliminating the bias of user click
rates for items in category 𝑔𝑣 .

Dataset MIND CW
Metric P<0.01 P<0.05 P<0.1 P<0.01 P<0.05 P<0.1
Direct 28.14% 38.88% 46.00% 48.96% 58.06% 63.82%
RM 17.38% 26.80% 34.52% 29.84% 41.86% 49.14%
Mat w 𝑑r 16.18% 25.84% 32.52% 12.22% 21.74% 28.90%
Mat w 𝑑vr 0.02% 0.02% 0.02% 0.30% 0.38% 0.44%
Mat w 𝑑e 19.36% 28.58% 35.60% 21.96% 33.16% 40.34%
Mat 4.84% 8.16% 11.50% 3.70% 7.06% 10.82%
SAM 0.77% 3.10% 6.10% 2.88% 6.19% 9.63%

• Compared to Direct and RS, Strat and SAM largely reduce the
number of subgroups affected by the time confounder in both
datasets. The results suggest that our stratification method and
approximation strategy effectively eliminate the time confounder.

• There is a slight difference in the performances of Strat and SAM.
We infer that the two confounders might not be completely inde-
pendent in real datasets. Adjusting the user feature confounder
in SAM may also affect the time confounder.

3.2.2 Performance of Eliminating User Feature Confounder. We first
justify the conjecture in Section 2.3.3, i.e., user click rates, especially
on the items in the same category as item 𝑣 (i.e., 𝑔𝑣 ) are sources of
estimation bias related to the user feature confounder. We denote
the average of user features 𝐹 in the treatment group and control
group as FT and FC, and calculate the difference Diff = FT − FC.
Similar to Section 3.2.1, we evaluate the P values for the Welch’s
t-tests between the feature differences in the treatment group and
control group. As shown in Table 3, without matching, the click
rates of users in the treatment group are significantly lower than
those in the control group, and a large proportion (40%-65%) of the
samples are affected by this bias. Similarly, as illustrated in Table 4,
users in the treatment group have significantly higher click rates
on 𝑔𝑣 than those in control group. These results reveal that the
user click rates on all items and on items of category 𝑔𝑣 are two
important user features causing the bias of estimating the ATE.

Next, we analyze whether the proposed matching method elim-
inates the user feature confounder. In addition to Direct and RM,
we further compare our method SAM with: (i) Mat w 𝑑r, 𝑑vr and
𝑑e: Matching with our proposed 𝑑r (Eq.(15)), 𝑑vr (Eq.(16)) and 𝑑e
(Eq.(19)), respectively. (ii)Mat: Matching with the approximation
strategy, i.e., mathing with our proposed 𝑑′ (Eq.(18)). Note that
SAM is matched in each subgroup X𝑘 after stratification, which
is consistent with our formulation in Section 2.3. In addition, to
individually evaluate whether our matching methods eliminate the
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Table 7: Running time with PS and our approximation.

#Sample 1e3 2e3 5e3 1e4 2e4 5e4 1e5
Strat w PS 0.033 0.042 0.093 0.168 0.331 0.791 1.574
Strat 0.010 0.011 0.012 0.014 0.021 0.043 0.087
Mat w PS 0.029 0.043 0.096 0.170 0.335 0.831 1.674
Mat 0.008 0.008 0.011 0.015 0.026 0.060 0.129
SAM w PS 0.059 0.092 0.175 0.346 0.660 1.634 3.242
SAM 0.013 0.014 0.017 0.021 0.035 0.075 0.155

Figure 3: Running time with PS and our approximation.

user feature confounders, RM and Mat w 𝑑r, 𝑑vr, 𝑑e, 𝑑′ employ
matching in the whole group X rather than the subgroup X𝑘 .

The results of the user click rates on all items and on 𝑔𝑣 are
presented in Tables 5 and 6, respectively. We observe that:
• Mat w 𝑑r and Mat w 𝑑vr achieve the best performances in two
biases, respectively. The proposed distance metrics 𝑑r and 𝑑vr
alleviate the affects of user feature confounders for almost all
samples, illustrating the validity of conducting matching.

• SAM and Mat achieve the second best performance on both
datasets, which validates the effectiveness of our distance ap-
proximation 𝑑′. Moreover, SAM and Mat are effective for both
biases, while Mat w 𝑑r and Mat w 𝑑vr can only eliminate one.

• Mat w 𝑑e is not specifically designed for these two biases, thus
showing poor performances. But its performance also surpasses
that of RM and Direct, validating the rationality of using user
embedding for matching.

• SAM shows promising performances in handling both time and
user feature confounders, which demonstrates that our entire
method successfully mitigates the confounding bias.

3.3 Efficiency Comparison (RQ2)
We then compare the efficiency of implementing the stratification
and matching with propensity scores (PS) and the proposed ap-
proximation strategies. We record the time to estimate effects at
different sample sizes |X|. We omit the results on the CW dataset
due to its relatively small size. We compare six approaches:
• Strat w PS, Mat w PS and SAM w PS: Implementing stratification,
matching and the entire method (including stratification and
matching) with the propensity scores, respectively.

• Strat, Mat and SAM: Implementing stratification, matching and
the entire method (including stratification and matching) with
our approximation strategies, respectively.
The experimental results are shown in Figure 3. We observe that

all the variants of the proposed method are significantly faster than

Table 8: Correlation of effects and item similarities.

Pearsonr Spearmanr Kendalltau
0.040*** 0.036*** 0.028***

Table 9: Statistics of ATE𝑣,𝑗 for (𝑣, 𝑗) pairs that 𝑠𝑖𝑚𝑣,𝑗 >= 0.01.

Positive Ratio Average Median
57.0% 0.0075 0.0031

Table 10: Correlation of effects and item similarities in dif-
ferent cases.

Correlation Pearsonr Spearmanr Kendalltau
All 0.040*** 0.036*** 0.028***
Same Category 0.067*** 0.105*** 0.079***
Diff Categories 0.015* 0.009 0.008

Table 11: Statistics of ATE𝑣,𝑗 for (𝑣, 𝑗) pairs that 𝑠𝑖𝑚𝑣,𝑗 >= 0.01
in different cases.

Statistics Positive Ratio Average Median
All 57.0% 0.0075 0.0031
Same Category 65.8% 0.0124 0.0071
Diff Categories 47.7% 0.0024 0.0000

the existing methods with PS. This indicates that our strategies
significantly improve the efficiency. To better show the efficiency
improvement, we show the quantitative running time in Table 7.
As can be seen, the running time of adjustment with PS is 15 to 20
times longer than that with our approximations.

3.4 Application of the Item-level Effects (RQ3)
We then show a simple example of using the item-level ATE esti-
mated by our method to provide insights for the design of recom-
mender systems with theMIND dataset which has recently received
more attention [31, 55].
3.4.1 Recognizing Filter Bubbles. Filter bubbles mean that user
preferences are constantly reinforced with recommendations [25].
We study whether recommendations in the Microsoft News lead to
filter bubbles in this section.

We first investigate the correlation between the effects and item
similarities. Specifically, we randomly sample (𝑣, 𝑗) item pair and
estimate the effect ATE of (𝑣, 𝑗), which is denoted as ATE𝑣,𝑗 . Then
we collect users that interact with 𝑣 and 𝑗 separately and calculate
the Jaccard Index as a proxy gauging the item similarity sim𝑣,𝑗 .
We then calculate correlation coefficients of ATE𝑣,𝑗 and sim𝑣,𝑗 .
The results are displayed in Table 8, where we use * to indicate P
value < 0.1, ** the 0.05, and *** the 0.01. Although the correlations
appear relatively small, all correlations are significant (P value <
0.01). Significant positive correlations between effects and item
similarities suggest that the more similar 𝑣 and 𝑗 are, the greater
the effect of recommendation 𝑣 on user preferences of 𝑗 (i.e.,making
users prefer 𝑗 ).

We then further calculate the ATE𝑣,𝑗 of similar item pairs (e.g.,
𝑠𝑖𝑚𝑣,𝑗 >= 0.01) and show the statistical properties of ATE in Table
9. We observe that the ratio of ATE𝑣,𝑗 > 0 exceeds 50 and both
the average and median of ATE𝑣,𝑗 are > 0. Note that ATE𝑣,𝑗 > 0
means that recommending item 𝑣 leads the user to prefer item 𝑗 .
Therefore, if a user prefers item 𝑗 and the system recommends an
item 𝑣 that is similar to the item 𝑗 , then the recommendation tends

246246



WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Wei Cai et al.

to reinforce the user preferences. Considering that a core principle
of the recommender systems is to recommend items similar to
those prefered by the user, recommendations in the Microsoft News
unavoidably lead to filter bubbles.

3.4.2 Alleviating Filter Bubbles. In this section, we further explore
the findings in Section 3.4.1. Specifically, we analyse the correlation
between the effects and item similarities in following ranges: (i)All:
All item pairs (same as Section 3.4.1). (ii) Same Category: Pairs
that 𝑣 and 𝑗 are from the same category. (iii) Diff Categories: Pairs
that 𝑣 and 𝑗 are from different categories. We show the results in
Table 10 and find that the correlations in Same Category are more
significant. Conversely, effects and item similarities are almost
completely unrelated in Diff Categories.

We adopt the same approach to analyse the effects of similar
item pairs (𝑠𝑖𝑚𝑣,𝑗 >= 0.01) in Table 11. We observe that for user
who prefers an item 𝑗 , recommending an item that is similar to 𝑗
and belongs to the same category as 𝑗 is likely (with 65.8% prob-
ability) to reinforce the user preferences of the item 𝑗 . However,
recommending an item that is similar to 𝑗 but belongs to a different
category from 𝑗 is less likely (with 47.7% probability) to reinforce
the user preferences of 𝑗 . This gives a simple and feasible way to
alleviate filter bubbles: recommend items that match the user pref-
erences but belong to categories that the user has less interaction
with. We believe that more precise ways to leverage the item-level
effects could be found in future work.

4 RELATEDWORK
In this section, we first discuss studies which focused on related
research questions, including the system-level effects on user pref-
erences and immediate effects on user feedbacks. Then we review
relevant existing algorithms, especially those that apply the causal
inference in the recommender systems.

System-level Effect on User Preference.Most prior studies
investigate whether and to what extent the whole recommender
system influence user preferences. They roughly fall into two cate-
gories. The first line of work focuses on the echo chambers [3] and
the filter bubbles [36]. These two refer to that the users with similar
interests are aggregated by the recommender systems [48]. Their
interests and perspectives are constantly reinforced and amplified
in this environment [36, 47]. Some researchers [24, 25] attempt to
propose theoretical models to explain these phenomena. They [25]
theoretically demonstrate that without intervention, user prefer-
ences will be amplified once they interact with the recommender
systems. Other researchers, through the analysis of real-world data,
find that the echo chambers and the filter bubbles widely exist
in many recommendation scenarios such as video media [18, 35],
social network [4, 7] and e-commerce [14]. They also propose met-
rics [14, 18] to demonstrate the extent of the echo chambers. The
second line of work investigates the "nudge" of recommender sys-
tems on user preferences. These works [8, 11, 27, 34, 50] argue that
recommender systems intentionally or unintentionally nudge the
preferences in a particular direction. For example, researchers [8, 9]
suggest that some recommender systems get users addicted to cer-
tain content by recommending specific items (e.g., negative news).
However, these works only study the effects of the entire recom-
mender system. The difference is that our method can quantify the

specific effects of recommending an item and help us understand
whether recommending the item leads to problems such as echo
chambers. Therefore, our method can provide specific guidance for
the recommendation strategy.

Immediate Effect on User Feedback. Common recommenda-
tion algorithms tend to recommend items that will be interacted
with ( e.g. purchase and click). However, some items could have been
interacted with even without recommendation. Therefore, some
recent works [12, 13, 28, 56] aim to estimate the immediate effect of
recommendation on user feedback about this recommendation. Ear-
lier methods [6, 42] first estimate the interaction probabilities with
and without recommendations, and then estimate the effects by
looking at the differences between them. Upon this, some methods
[13, 43] eliminates bias and provides more accurate recommenda-
tions. The main differences between these works and ours are that:
(i) they focus on the immediate impact of recommendations on
user feedback, while we focus primarily on the long-term impact
of recommendations on user preferences, and (ii) they focus on the
user feedback on the exposed item, while we aim to estimate the
effect of exposure of one item on user preference for another.

Causal Inference in Recommendation. The causal inference
focuses on how to eliminate confounding bias [16]. Inverse of
propensity scores (IPS) [21, 38], stratification [22, 57], and match-
ing [40] are common causal inference methods. Causal inference
has been recently introduced into recommender systems to elimi-
nate various biases [10, 51, 52] such as popularity bias[2], clickbait
bias [52] and Matthew effect [51]. Early studies [44, 49] propose
unbiased metrics and unbiased learning methods through the IPS
methods. Several researchers [29] present exposure models for
estimating propensity scores. To improve the robustness of the
methods, the doubly robust models [53] combine the IPS methods
and the data imputation methods [17, 33]. Very few studies adopt
stratification methods and matching methods in recommender sys-
tems. Some research [5, 45, 46] stratifies items according to their
popularity and design fairer evaluations of recommender systems.
In addition, one study [20] employs matching methods to discuss
whether recommendations segregate people into different groups.
The differences between these algorithms and ours are that: (i) our
method is not allowed to use the propensity scores due to the huge
computational cost and high variance [41, 53], and (ii) they only
eliminate one type of confounders, which is relatively simple.

5 CONCLUSIONS AND FUTUREWORK
This paper highlights the importance of estimating the effects of
recommending an item on user preferences, i.e., item-level effects.
We adopt the widely used stratification and matching to eliminate
the confounding bias. In order to improve the efficiency of the
estimation, we present two new approximation strategies. Exten-
sive experiments on two real-world datasets demonstrate that our
methods effectively eliminate the bias and that our approximation
strategies significantly shorten the running time.

In the future, we would like to investigate whether there exists
other biases (e.g., selection bias) in the estimation procedure that
are not considered, and enhance our method to eliminate such bias.
Moreover, the processing of each sample in our method is fully
parallelizable. Therefore, we plan to implement a parallel version
of the method to further speed up the estimation.
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